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ABSTRACT 

The Joint Tactical Information Distribution System (JTIDS) is a hybrid 

frequency-hoped, direct sequence spread spectrum system that utilizes a (31, 15) Reed-

Solomon (RS) code and cyclical code-shift keying (CCSK) modulation for the data 

packets, where each encoded symbol consists of five bits. In this thesis, an alternative 

waveform consistent with the existing JTIDS channel waveform is analyzed. The system 

to be considered uses (31, 15) RS encoding as the original JTIDS, but each pair of five-

bit symbols at the output of the RS encoder undergo serial-to-parallel conversion to two 

five-bit symbols, which are then independently transmitted on the in-phase (I) and 

quadrature (Q) component of the carrier using 32-ary orthogonal signaling with 32 chip 

baseband waveforms such as Walsh functions. This system is consistent with the direct 

sequence waveform generated by JTIDS. The performance obtained with alternative 

waveform is compared with that obtained with the existing JTIDS waveform for the 

relatively benign case where additive white Gaussian noise (AWGN) is the only noise 

present as well as when pulse-noise interference (PNI) is present. Errors-and-erasures 

decoding (EED) as well as errors only decoding is also considered. 

Based on the analyses, we conclude that the proposed alternative Link-16/JTIDS 

compatible waveform performs better than the existing Link-16/JTIDS waveform in 

AWGN as well as when PNI is present for both coherent and noncoherent demodulation. 

No significant advantage is obtained by using errors-and-erasures decoding (EED) for the 

alternative Link-16/JTIDS compatible waveform. 
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EXECUTIVE SUMMARY 

Tactical data links (TDL) have played a vital role in modern military strategy and 

have attracted much attention since they form the basis of technology that supports 

Network Centric Warfare. In order to provide a real-time exchange of tactical data to all 

participants, tactical data links must be able to effectively achieve and manage all of the 

battle information in a modern warfare battlefield. 

The Joint Tactical Information Distribution System (JTIDS)/Link-16 is a message 

tactical data link which is used by naval, joint service and NATO units from different 

countries around the world. It provides digital communication of both data and voice for 

command and control, relative positioning, identification, navigation, and situational 

awareness. 

Link-16/JTIDS operates in the L-band and is a hybrid frequency-hopped, direct 

sequence spread spectrum system that utilizes a (31, 15) Reed-Solomon (RS) code and 

cyclical code-shift keying (CCSK) modulation for the data packets, where each encoded 

symbol consists of five bits. In this thesis, an alternative waveform consistent with the 

existing JTIDS channel waveform was analyzed. The system considered uses (31, 15) RS 

encoding as the original JTIDS, but each pair of five-bit symbols at the output of the RS 

encoder undergo serial-to-parallel conversion to two five-bit symbols, which are then 

independently transmitted on the in-phase (I) and quadrature (Q) component of the carrier 

using 32-ary orthogonal signaling with 32 chip baseband waveforms such as Walsh 

functions. This system is consistent with the direct sequence waveform generated by 

JTIDS. The performance obtained with the alternative waveform was compared with that 

obtained with the existing JTIDS waveform for the relatively benign case where additive 

white Gaussian noise (AWGN) is the only noise present as well as when pulse-noise 

interference (PNI) is present. Errors-and-erasures decoding (EED) as well as errors only 

decoding was also considered. 

Based on the analyses and results of this thesis, we conclude that the proposed 

alternative Link-16/JTIDS compatible waveform performs 1.7 dB and 1.4 dB better than 

the existing Link-16/JTIDS waveform in AWGN for coherent and noncoherent 



 xvi

demodulation, respectively. When PNI is present, the alternative waveform outperforms 

the existing waveform by 2.8 dB and 3.1 dB for coherent and noncoherent demodulation, 

respectively, when 0/ 10bE N =  dB. No significant advantage is obtained by using errors-

and-erasures decoding (EED) for the alternative Link-16/JTIDS compatible waveform. 
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 1 

I. INTRODUCTION 

A. OVERVIEW 

 Tactical data links (TDL) have played a vital role in modern military strategy and 

attracted much attention since they form the basis of technology that supports Network 

Centric Warfare. In order to provide a real-time exchange of tactical data to all 

participants, tactical data links must be able to manage all battle information in today’s 

modern warfare battlefield. 

Link-16/Joint Tactical Information Distribution System (JTIDS) operates in the 

L-band and is a good example of a waveform designed to resist interference.              

Link-16/JTIDS uses a combination of time-division multiple access, frequency-hopping, 

direct sequence spread spectrum, Reed Solomon (RS) encoding and cyclical code-shift 

keying (CCSK) modulation. Link-16/JTIDS produces a 32-chip sequence with CCSK 

modulation to represent each 5-bit symbol, and the individual chips are transmitted using 

minimum-shift keying (MSK) modulation. 

 A primary drawback to JTIDS is the limited data throughput which makes it ill 

suited for the transmission of large blocks of data. This constrains its usage to situational 

awareness functions, command and control, and derivative functions such as weapon 

guidance [1]. 

B. THESIS OBJECTIVE 

Some enhancements to JTIDS have been introduced to alleviate problems arising 

from its basic design. One enhancement is Link-16 Enhanced Throughput (LET), which 

leads to increased throughput. For LET, the spread spectrum and RS encoding of the 

original JTIDS waveform are replaced with a combined RS and convolutional coding 

scheme which can adapt to required link capability much in the manner of the variable 

throughput design of the IEEE 802.11a and g waveforms. LET provides 3.33, 5.08, 7.75, 

9.0, or 10.25 times more throughput than the basic JTIDS modulation but does so at the 

expense of both link robustness and transmission range. The highest data rate LET mode 

is probably insufficiently robust for most combat environments [1]. In [2] the 
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performance of a CCSK waveform is compared with an orthogonal waveform. In [3] an 

analysis of different forward error correction (FEC) techniques for high-rate direct 

sequence spread spectrum is examined. In [4], an analytical approximation for the 

probability of symbol error of CCSK is derived, but the performance obtained is 

optimistic by about 2 dB [5]. In this thesis, an alternative waveform consisting of (31, 15) 

RS encoding and 32-ary orthogonal signaling with 32 chip baseband waveforms is 

analyzed. The alternative waveform is consistent with the existing JTIDS channel 

waveform. The effects of both additive white Gaussian noise (AWGN) and pulse-noise 

interference (PNI) are investigated. To the best of the author’s knowledge, the effect of 

PNI on this waveform has not been previously investigated. 

C. THESIS OUTLINE 

This thesis is organized into the introduction, background (Chapter II) and five 

additional chapters. Chapter III contains an analysis of the performance of 32-ary 

orthogonal signaling with (31, 15) RS encoding in an AWGN environment. In Chapter 

IV, the performance of 32-ary orthogonal signaling with (31, 15) RS encoding in both 

AWGN and PNI environment is analyzed. Chapter V contains a comparison of the 

performance of 32-ary orthogonal signaling with (31, 15) RS encoding with the JTIDS 

waveform both for AWGN only as well as both AWGN and PNI. In Chapter VI, the 

performance of 32-ary orthogonal signaling with (31, 15) RS encoding in both AWGN 

and PNI environment with errors-and-erasures decoding is analyzed. Finally, in Chapter 

VII the conclusions based on the results obtained from the analysis in the previous 

chapters are presented. 
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II. BACKGROUND 

In this chapter, some of the background knowledge and concepts required for 

subsequent analysis of the alternative JTIDS/Link-16 waveform considered in this thesis 

are introduced. 

A. M-ARY ORTHOGONAL SIGNALS 

For M-ary communication systems, one of M unique signals, 

( ) , 1, 2,..., ,ms t m M=  is transmitted in order to represent symbol m . Each symbol 

represents k  bits where 2kM = .  An M-ary orthogonal signal can be received either 

coherently (the receiver requires the phase of the received signal) or noncoherently (the 

receiver does not require the phase of the received signal). This type of receiver can be 

implemented either with a bank of  M  multipliers and low pass filters or with a bank of 

M matched filters [6]. 

The waveform of an M-ary orthogonal signal when AWGN is present can be 

represented by 

                                         ( ) ( ) ( )2 ( )cos 2T c m c is t A c t f t n t= π + θ +                                (2.1) 

where ( )n t  is AWGN noise with PSD 0 / 2N , the phase difference is known for coherent 

detection and ( )mc t , 1, 2,...,m M= , is a baseband waveform that represents symbol m . A 

block diagram of a coherent M-ary orthogonal baseband waveform demodulator is shown 

in Figure 1. 

It can be shown that the integrator outputs ( )m Sx iT  for each branch of the 

receiver can be represented as the independent Gaussian random variables 

, 1, 2,...,mX m M= . The conditional probability density functions for the random 

variables , 1,2,...,mX m M= , that represent the integrator outputs when the noise is 

modeled as Gaussian are [6] 
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                          ( )
( )2

2

21| exp for
22m

mm

m c

X m
xx

x A
f x m m M

⎡ ⎤− −⎢ ⎥= ≤⎢ ⎥σπσ
⎢ ⎥⎣ ⎦

                    (2.2) 

and 

                                     ( )
2

2

1| , exp
22n

mm

n
X n

xx

xf x n n m
⎡ ⎤−

≠ = ⎢ ⎥
σπσ ⎢ ⎥⎣ ⎦

                                 (2.3) 

when the signal corresponding to symbol m is transmitted and  

                                       
1 2

2 2 2 2
0... /

MX X X sN Tσ σ σ σ= = = = = .                                  (2.4) 

 The mean of  mX  is given by 

                          ( ) { 22 ,
0 ,

0

2 2 ( ) ( ) cos 2
s

c

T
A for n mc

m m n c i for n m
s

AX c t c t f t dt
T

=
≠= π + θ =∫  .                  (2.5) 

 

Figure 1.   Block diagram of a coherent M-ary orthogonal baseband waveform 
demodulator (From: [6]). 
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The signal is the same for noncoherent detection of M-ary orthogonal signals 

when AWGN is present, but the phase difference is not known. A block diagram of a 

noncoherent M-ary orthogonal baseband waveform demodulator is shown in Figure 2. 

  When AWGN is present, it can be shown that the integrator outputs ( )m Sx iT  for 

each branch of the receiver can be represented as the independent Gaussian random 

variables , , 1, 2,...,
i qm mX X m M= , where for the in-phase integrator outputs 

                           
( ) ( )

0

2 cos ,
0 ,

2 2 ( ) ( ) cos 2 cos 2
s

i

T
c

m m n c i c
s

c iA for n m
for n m

AX c t c t f t f t dt
T

θ =
≠

= π + θ π

⎧= ⎨
⎩

∫
,                      (2.6) 

and for the quadrature integrator outputs 

                          
( ) ( )

0

2 sin ,
0 ,

2 2 ( ) ( ) cos 2 cos 2
s

q

T
c

m m n c i c
s

c iA for n m
for n m

AX c t c t f t f t dt
T

− θ =
≠

= π + θ π

⎧= ⎨
⎩

∫
,                      (2.7) 

where 

                              
1 2

1 2

2 2 2

2 2 2 2
0

...

... /
Mi i i

q Mqq

X X X

X X X sN T

σ σ σ

σ σ σ σ

= = =

= = = = = =
.                          (2.8) 

The conditional probability density functions for the random variables 

, 1, 2,...,mV m M= , that represent the output of the thm  branch when the signal 

corresponding to symbol m  is transmitted is given by the non-central chi-squared 

probability density function with two degrees of freedom when the noise is modeled as 

Gaussian [6]. Hence, 

                            ( ) ( )2

02 2 2

2 21| exp
2 2m

m c c m
V m

v A A v
f v m I

⎡ ⎤ ⎛ ⎞− +
⎢ ⎥= × ⎜ ⎟⎜ ⎟σ σ σ⎢ ⎥ ⎝ ⎠⎣ ⎦

           (2.9) 
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where  ( )0I •  is the modified Bessel function of the first kind and order zero, and 

                                         ( ) 2 2

1| , exp
2 2n

n
V n

vf v n n m −⎡ ⎤≠ = ⎢ ⎥σ σ⎣ ⎦
                                     (2.10) 

since ( )0 0 1I = . 

 

Figure 2.   Block diagram of a noncoherent M-ary orthogonal baseband waveform 
demodulator (From: [6]). 

 

B. PERFORMANCE OF M-ARY ORTHOGONAL SIGNALING IN AWGN 

When AWGN is present with power spectral density 0 / 2N , the probability of 

channel symbol error for coherent M-ary orthogonal signaling in AWGN is [6] 
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                             ( )2
2

1

0

21 1 1 ( )
2

u
M

s
s

Ep e Q u du
N

−
−∞

−∞

⎧ ⎫⎡ ⎤⎪ ⎪= × − − +⎨ ⎬⎢ ⎥
π ⎣ ⎦⎪ ⎪⎩ ⎭
∫                     (2.11) 

and for noncoherent M-ary orthogonal signaling in AWGN is [6] 

                                   ( ) ( ) ( )

11
1

1

1
exp

1 1

nM
M b

s n
n o

nrmEp
n n N

+−
−

=

⎡ ⎤− −
= ⎢ ⎥+ +⎣ ⎦
∑                              (2.12) 

where sE is the average energy per channel symbol, 2
s c sE A T= , where 2

cA  is the average 

received signal power, sT  is the symbol duration, and ( )Q •  is the Q-function. Equations 

(2.10) and (2.11) will be used to obtain the probability of symbol and bit error for the 

alternative JTIDS/Link-16 system in the next chapter. 

 

C. PERFORMANCE IN AWGN WITH PULSED-NOISE INTERFERENCE  

We have also to consider the effect of PNI on the performance of the system. In 

this thesis, we consider the performance of the alternative JTIDS/Link-16 system in both 

AWGN and PNI. 

When a channel is affected by AWGN, the noise signal that arrives at the receiver 

is assumed to be uniformly spread across the spectrum and time-independent, but those 

assumptions may not be valid if PNI is present. In this thesis, the AWGN and PNI are 

assumed to be statistically independent, and the PNI is modeled as Gaussian noise. When 

AWGN and PNI are both present the total noise power at the receiver integrator outputs 

is given by 

                                                           2 2 2
X WG Iσ = σ +σ                                                    (2.13) 

where 2
0 /WG bN Tσ =  and 2 /I I bN Tσ = ρ , and ρ  is a fraction of time that an interferer is 

switched on. When ρ =1, the interferer is continuously on and is referred to as barrage 

noise interference. 
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When PNI is present, the probability of symbol error can be expressed as 

         Pr(Interferer isON) (AWGN+PNI) Pr(Interferer is OFF) (AWGN)s s sP p p= +   (2.14) 

where we assume that a symbol is either completely free of PNI or the entire symbol is 

affected by PNI. Since Pr(Interferer isON)= ρ , 

                                     (AWGN+PNI) (1 ) (AWGN)s s sP p p= ρ + −ρ ,                        (2.15) 

 where ( )sp x  represent the probability of symbol error for condition as it is defined by x . 
 

D. FORWARD ERROR CORRECTION CODING   

For JTIDS/Link-16, the FEC used is (31, 15) RS coding, a linear, non-binary 

code. To maintain consistency with the JTIDS/Link-16 waveform, the alternative 

JTIDS/Link-16 waveform also employs (31, 15) RS coding for error detection and 

correction. For non-binary codes, symbols are generated instead of bits where each 

symbol represents m bits and the number of different symbols required are 2mM = . An 

( , )n k  RS encoder, takes k information symbols ( m k  information bits) and generates n 

coded symbols ( m n  coded bits) [7]. 

The probability of decoder, or block, error for a t-symbol error correcting, 

nonbinary block code with maximum likelihood decoding is upper bounded by [7] 

                                                   ( )
1

1
n

n ii
E s s

i t
P p p

n
i

−

= +

⎛ ⎞
≤ −⎜ ⎟

⎝ ⎠
∑                                          (2.16) 

or 

                                                ( )
0

1 1
t

n ii
E s s

i
P p p

n
i

−

=

⎛ ⎞
≤ − −⎜ ⎟

⎝ ⎠
∑                                         (2.17) 

where the inequality holds for either a perfect code or a bounded distance decoder, and 

sp  is the probability of coded, or channel, symbol error. 

For RS codes and M-ary orthogonal modulation with 2mM =  and hard decision 

decoding, we obtain the probability of information bit error as [7] 

                                                  ( )2
1

1 1
2

n
n ii

b s s
i t

nP i p p
n

n
i

−

= +

⎛ ⎞+
≈ −⎜ ⎟

⎝ ⎠
∑ .                                (2.18) 
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E. ERRORS-AND-ERASURES DECODING 

Error-and-erasures decoding (EED) is the simplest form of soft decision decoding 

and an alternative to hard decision decoding that is easily implemented. In binary erasure 

decoding, the output of the demodulator is not binary but ternary, and the three possible 

outputs are bit 1, bit 0, and erasure ( e ). Suppose that a received code word has a single 

erased bit. Now all valid code words are separated by a Hamming distance of at least 

min 1d − . In general, given e  erasures in a received code word, all valid code words are 

separated by a Hamming distance of at least mind e− . Hence, the effective free distance is 

[7] 

                                                           min mineff
d d e= − .                                              (2.19) 

Therefore, the number of errors in the non-erased bits of the code word that can 

be corrected is [7] 

                                                        min
1 1
2et d e⎡ ⎤⎣ ⎦= − − .                                            (2.20) 

A total of et  errors and e  erasures can be corrected as long as 

                                                              min2 et e d+ < .                                                  (2.21) 

Hence, twice as many erasures as errors can be corrected. Intuitively, this makes 

sense because we have more information about the erasures; the locations of the erasures 

are known, but the locations of the errors are not. 

For error-and-erasures decoding, the probability that there are a total of i  errors 

and j  erasures in a block of n  symbols is given by [7] 

                                                Pr( , ) i j n i j
s e ci j p p p

n n i
i j

− −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

−
                                 (2.22) 

where each symbol is assumed to be received independently, ep  is the probability of 

channel symbol erasure, sp  is the probability of channel symbol error, and the 

probability of correct channel symbol detection is [7] 

                                                            1s e cp p p= − − .                                                (2.23) 
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Since a block error does not occur as long as min 2d i j> + , then the probability of 

correct block decoding is given by 

                                        
min 1 2

0 0

d it
i j n i j
s e cC

i j
P p p p

n n i
i j

− −
− −

= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=
−∑ ∑                              (2.24) 

In this case, the probability of block error is given by 

                                                              1E CP P= −                                                       (2.25) 

Substituting (2.24) into (2.25), we get 

                                     
min 1 2

0 0
1

d it
i j n i j
s e cE

i j
P p p p

n n i
i j

− −
− −

= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= −
−∑ ∑ .                          (2.26) 

Using the average of the upper and lower bound on the probability of symbol 

error given that a block error has occurred, we can approximate the probability of symbol 

error as [7] 

                                                              1
2s E

kP P
k
+

≈ .                                                   (2.27) 

Finally, an approximation for the probability of bit error is obtained by taking the 

average of the upper and lower bound on the probability of bit error given that a symbol 

error has occurred to get 

                                                             1
2b s

mP P
m
+

≈ .                                                   (2.28) 

 

F. CHAPTER SUMMARY 

In this chapter, M-ary orthogonal signals were introduced and the background and 

concepts necessary to examine the performance of an alternative JTIDS/Link-16 

waveform which consists of 32-ary orthogonal signaling with (31, 15) RS coding both for 

coherent and noncoherent demodulations were addressed. The concept of forward error 

correction (FEC) coding as well as the concept of errors-and-erasures (EE) decoding was 

also introduced. In the next chapter, the performance of an alternative JTIDS waveform 

that utilizes (31, 15) RS coding with M-ary orthogonal modulation transmitted over a 

channel with only AWGN is examined. 
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III. PERFORMANCE ANALYSIS OF 32-ARY ORTHOGONAL 
SIGNALING WITH (31,15) RS ENCODING IN AWGN  

 In this chapter we examine the performance of 32-ary orthogonal signaling with 

(31, 15) RS encoding in an AWGN environment. 

We first examine the performance for coherent demodulation in AWGN, noise 

which is present for all communications systems even when there are no other types of 

noise present. Second, the performance of the alternative waveform for noncoherent 

demodulation is examined. Finally, the results obtained with coherent and noncoherent 

demodulation are examined. 

A. COHERENT DEMODULATION 

For the alternative JTIDS waveform with 32-ary orthogonal modulation, the 

probability of channel symbol error is upper bounded by [6] 

                                                      ( )
0

1 s
s

rEp M Q
N

⎛ ⎞
≤ − ⎜ ⎟⎜ ⎟

⎝ ⎠
,                                           (3.1) 

where /r k n= , is the code rate. 

Expressed in terms of bit energy bE , (3.1) is given by 

                                                     ( )
0

1 b
s

rmEp M Q
N

⎛ ⎞
≤ − ⎜ ⎟⎜ ⎟

⎝ ⎠
,                                         (3.2) 

where m is the number of bits per symbol. 

 In this thesis, we only consider 32M =  and 5m = , so (3.2) reduces to 

                                                          
0

531 b
s

rEp Q
N

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
.                                              (3.3) 

Substituting (3.3) into (2.18), we get the results are shown in Figure 3 for 32-ary 

orthogonal signaling with (31, 15) RS encoding (the alternative JTIDS waveform) in 

AWGN for coherent demodulation. As can be seen, in order to achieve 510bP −= , the 

alternative waveform requires / 5.3bE No = dB. 
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Alternative JTIDS:Coherent demodulation

 

Figure 3.   Performance of 32-ary orthogonal signaling with (31, 15) RS encoding in 
AWGN for coherent demodulation. 

 

B. NONCOHERENT DEMODULATION 

The probability of channel symbol error for 32-ary orthogonal signaling with 

noncoherent demodulation is upper bounded by [6] 

                                                  ( )
0

1
exp

2 2
s

s

M rEp
N

− ⎛ ⎞
≤ −⎜ ⎟

⎝ ⎠
.                                           (3.4) 

Expressed in terms of bit energy bE , (3.4) is given by 

                                                 ( )
0

1
exp

2 2
b

s

M rmEp
N

− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.                                          (3.5) 
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For 32M =  and  5m = , (3.5) simplifies  to  

                                                    
0

515.5exp
2

b
s

rEp
N

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.                                              (3.6) 

As for coherent demodulation, the probability of bit error is obtained by 

substituting (3.5) into (2.18). The results are shown in Figure 4 for 32-ary orthogonal 

signaling with (31, 15) RS encoding. As can be seen, in order to achieve 510bP −= , the 

alternative waveform requires / 6.6bE No = dB for noncoherent demodulation. 
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Figure 4.   Performance of 32-ary orthogonal signaling with (31, 15) RS encoding in 
AWGN for noncoherent demodulation. 
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C. COMPARISON OF THE PERFORMANCE OBTAINED WITH 
COHERENT AND NONCOHERENT DEMODULATION 

For purposes of comparison, the performances obtained for both coherent and 

noncoherent demodulation of the alternative waveform are plotted in Figure 5. As 

previously mentioned, at 510bP −=  the alternative waveform requires 0/ 5.3bE N =  dB 

and 0/ 6.6bE N =  dB for coherent and noncoherent demodulation, respectively. Hence, 

there is a gain of 1.3 dB at 510bP −=  with coherent as opposed to noncoherent 

demodulation. 
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Figure 5.   Comparison of the performance of coherent and noncoherent demodulation 
for the alternative waveform in AWGN. 
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D. CHAPTER SUMMARY 

In this chapter, the effects of AWGN on the performances for both coherent and 

noncoherent demodulation of the alternative JTIDS waveform were examined. In the next 

chapter, the performance of the alternative JTIDS waveform for both coherent and 

noncoherent demodulation in both AWGN and PNI are examined. 
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IV. PERFORMANCE ANALYSIS OF 32-ARY ORTHOGONAL 
SIGNALING WITH (31,15) RS ENCODING IN AWGN AND 

PULSE-NOISE INTERFERENCE 

We now examine the performance of the receiver in the presence of PNI and 

AWGN. With PNI, we assume that the communications system is attacked by a noise-

like signal that is turned on and off periodically. If ρ represents the fraction of time that 

the PNI is turned on, then (1 )ρ− represents the fraction of time that the PNI is turned 

off where 0 1ρ< ≤ . In this kind of noisy environment, received symbols are affected 

by two different levels of noise power since some of the symbols are affected only by 

AWGN and the rest by both AWGN and PNI. If the one-sided power spectral density 

(PSD) of the AWGN is oN and the one-sided PSD of barrage noise interference is IN , 

then /IN ρ  is the PSD of the PNI since we assume that average interference power is 

independent of ρ . 

A. COHERENT DEMODULATION 

For the alternative JTIDS waveform, the probability of channel symbol error for 

the coherent demodulation is obtained by combining (2.11), (2.13) and (2.15) to get 

                      

( )

( ) ( )

2
2

2
2

1

0

1

0

1 21 1 ( )
2

211 1 1 ( )
2

u

u

M

s
I

b b

M

s

rmp e Q u duN N
E E

Ee Q u du
N

ρ
π

ρ

ρ
π

−

−

−

∞

−∞

−∞

−∞

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥= × − − +⎨ ⎬

⎢ ⎥⎪ ⎪+⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤⎪ ⎪+ − × − − +⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫

.              (4.1) 

Defining /b b oE Nγ = , /I b IE Nγ = , and ( )( )111/T b I
−−⎡ ⎤γ = γ + ργ

⎣ ⎦
, we obtain from 

(4.1) 
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( ) { }
( ) ( ) { }

2
2

2
2

31

31

1 1 1 ( 10 )
2

11 1 1 ( 10 )
2

u

u

s T

b

p e Q u r du

e Q u r du

ρ γ
π

ρ γ
π

−

−

∞

−∞
∞

−∞

⎡ ⎤= × − − +⎣ ⎦

⎡ ⎤+ − × − − +⎣ ⎦

∫

∫
            (4.2) 

The probability of bit error is obtained by substituting (4.2) into (2.18). 

The performance of the alternative waveform for different values of ρ  in both 

AWGN and PNI for coherent demodulation is shown in Figure 6. The plot is obtained for 

/ 10b oE N = dB, and we see that PNI degrades the performance of the system relative to 

barrage-noise interference (BNI). 
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Figure 6.   Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI for coherent demodulation with 

/ 10b oE N = dB. 
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From Table 1 we can see that PNI degrades the performance of the system relative 

to barrage-noise interference ( 1ρ = ) when 510bP −= by almost 3.0 dB. For 0.1ρ < , 

performance is not affected for 510bP −≥ . 

 

Table 1.   Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI for coherent demodulation when 

510bP −= . 

ρ  /b IE N  (dB) 

1 6.3 

0.2 9.1 

0.1 8.3 

 

B. NONCOHERENT DEMODULATION 

When AWGN and PNI are both present, the probability of channel symbol error 

for 32-ary orthogonal signaling with noncoherent demodulation is obtained by combining 

(2.12), (2.13) and (2.15) to get  

                                

( ) ( )
( )

( ) ( ) ( ) ( )

11
1

1 0

11
1

1

1
exp

1
1

1
1 exp

1 1

nM
M

s n
n I

b b
nM

M b
n

n o

nrmp
n N Nn

E E
nrmE

n n N

ρ

ρ

ρ

+−
−

=

+−
−

=

⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥+ ⎛ ⎞

+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤− −
+ − ⎢ ⎥
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Making the same substitutions in (4.3) that were made in (4.2), we get 
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Substituting (4.4) into (2.18), we get the performance of the alternative waveform 

for different values of ρ  in both AWGN and PNI for noncoherent demodulation. The 

results are shown in Figure 7. The plot is obtained for / 10b oE N = dB, and we see that 

PNI degrade the performance of the system relative to barrage-noise interference (BNI) 

just as in the case of coherent demodulation. 
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Figure 7.   Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI for noncoherent demodulation with 

/ 10b oE N = dB. 

 
From Table 2 we can see that PNI degrades the performance of the system relative 

to barrage-noise interference when 510bP −= by 3.1 dB. For 0.1ρ < , performance is not 

affected for 510bP −≥ , just as in the case of coherent detection. 
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Table 2.   Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI for noncoherent demodulation 

when 510bP −= . 

ρ  /b IE N  (dB) 

1 8.1 

0.2 11.2 

0.1 10.9 

 

C. COMPARISON BETWEEN COHERENT AND NON-COHERENT 
DEMODULATION 

For purposes of comparison, the performance for both coherent and noncoherent 

demodulation of the alternative waveform for 1ρ = , 0.2ρ = , and 0.1ρ =  are plotted in 

Figures 8, 9 and 10, respectively. In each figure, /b oE N =10 dB, and we see that in this 

case PNI degrades the performance of the system relative to BNI. Also in each figure, 

performance with /b oE N =6.8 dB, which results in 810bP −=  for noncoherent 

demodulation when /b IE N >>1, is compared with those for coherent demodulation when 

/b oE N =6.8 dB. The /b IE N  required for 510bP −=  when /b oE N =10 dB and when 

/b oE N =6.8 dB for 1ρ = , 0.2ρ = , and 0.1ρ = , respectively, are listed in Tables 3, 4 

and 5.  

From Figures 8, 9 and 10, we see that for /b oE N =6.8 dB, which leads 

asymptotically to 810bP −=  for noncoherent demodulation, the /b IE N  required for 

510bP −=  increases as ρ  decreases. Additionally, for /b oE N =10 dB and 510bP −= , as ρ  

decreases, the difference in performance between coherent and noncoherent 

demodulation increases from 1.7 dB for BNI  to 2.6 dB  for 0.1ρ = . Note that a 

reduction of /b oE N  requires an increase in /b IE N  in order to maintain 510bP −= . In the 

case of noncoherent detection, an approximately 3 dB decrease of /b oE N  leads to a 
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greater than 3 dB increase in required /b IE N . The increase is the most extreme for BNI, 

when /b IE N  must increase by more than 5 dB. In the case of coherent detection, an 

approximately 3 dB decrease in /b oE N  also leads to an increase in required /b IE N , but 

in this case the increase is less than 3 dB. As in the noncoherent case, the increase is the 

most extreme for BNI, when /b IE N  must increase by 2.6 dB. For both coherent and 

noncoherent demodulation, as ρ  decreases, the increase in required /b IE N  also 

decreases. 
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Figure 8.   Comparison of the performance of the alternative waveform with both 
AWGN and BNI for coherent and noncoherent demodulation. 
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Table 3.   Comparison of the performance of the alternative waveform with both AWGN 
and BNI for coherent and noncoherent demodulation when 510bP −= . 

/b oE N (dB) Demodulation /b IE N  (dB) 

10 Coherent 6.3 

10 Noncoherent 8.1 

6.8 Coherent  8.9 

6.8 Noncoherent  13.3 
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Figure 9.   Comparison of the performance of the alternative waveform for 0.2ρ =  
with both AWGN and PNI for coherent and noncoherent demodulation. 
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Table 4.   Comparison of the performance of the alternative waveform for 0.2ρ =  with 
both AWGN and PNI for coherent and noncoherent demodulation when 

510bP −= . 

/b oE N (dB) Demodulation /b IE N  (dB) 

10 Coherent 9.1 

10 Noncoherent 11.2 

6.8 Coherent  10.4 

6.8 Noncoherent  14.4 
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Figure 10.   Comparison of the performance of the alternative waveform for 0.1ρ =  with 
both AWGN and PNI for coherent and noncoherent demodulation. 
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Table 5.   Comparison of the performance of the alternative waveform for 0.1ρ =  with 
both AWGN and PNI for coherent and noncoherent demodulation when 

510bP −=  . 

/b oE N (dB) Demodulation /b IE N  (dB) 

10 Coherent 8.3 

10 Noncoherent 10.9 

6.8 Coherent  9.6 

6.8 Noncoherent  14.5 

 

D. CHAPTER SUMMARY 

In this chapter, the effects of AWGN and PNI on the performance of the 

alternative JTIDS waveform for both coherent and noncoherent demodulation were 

examined. In the next chapter, the performance of the original JTIDS waveform for both 

coherent and noncoherent demodulation is examined for AWGN as well as for both 

AWGN and PNI. The performance of the alternative waveform is then compared to the 

original JTIDS waveform for both coherent and noncoherent detection. 
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V. COMPARISON OF THE PERFORMANCE OF 32-ARY 
ORTHOGONAL SIGNALING WITH (31,15) RS ENCODING 

TO THAT OF THE JTIDS WAVEFORM 

In this chapter, the performance of the alternative JTIDS/Link-16 waveform is 

compared with that of the original JTIDS/Link-16 waveform. Results from [5] are used to 

obtain the performance of the original JTIDS/Link-16 waveform. 

A. ORIGINAL JTIDS WAVEFORM IN AWGN 

1. Coherent Demodulation  

For the original JTIDS/Link-16 waveform, the FEC used is (31, 15) RS coding, 

and the modulation is CCSK, which is demodulated at the chip level. In AWGN, the 

probability of channel chip error with coherent detection is [5] 

                                                       
0

10
32

b
c

rLEp Q
N

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
                                                 (5.1) 

where r  is the code rate, 1L =  for the single-pulse structure, /r k n=  , and bE  is the 

average energy per bit in a pulse.  

An analytic expression for the probability of channel symbol error for the CCSK 

sequence used in JTIDS is [5] 

                                                ( )
32

32

0

1
32 jj

s j c c
j

p p p
j

−

=

⎛ ⎞= ζ −⎜ ⎟
⎝ ⎠

∑                                        (5.2) 

where jζ  is the conditional probability of channel symbol error given that j  chip errors 

have occurred at the output of MSK chip demodulator. The values of jζ  are derived in 

[5]. 

As in the previous chapters, (5.2) is used in  

                                                ( )
1

1 1
n

n ii
s s s

i t

P i p p
n

n
i

−

= +

⎛ ⎞
≈ −⎜ ⎟

⎝ ⎠
∑                                          (5.3) 

and (2.28) to obtain an estimate of the probability of bit error.  
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The performance of the original JTIDS waveform with coherent demodulation in 

AWGN is shown in Figure 11. 
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Figure 11.   Performance of the original JTIDS waveform in AWGN for coherent 
demodulation. 

 

2. Noncoherent Demodulation 

For the original JTIDS/Link-16 waveform, in AWGN the probability of channel 

chip error is  

                                                   
0

101 exp
2 32

b
c

rEp
N

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.                                                 (5.4) 
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Again, equations (5.2), (5.4) and (2.28) are used to obtain the probability of bit 

error. 

The performance of the original JTIDS waveform in AWGN with noncoherent 

demodulation is shown in Figure 12. 
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Figure 12.   Performance of the original JTIDS in AWGN for noncoherent 
demodulation. 

 

3. Comparison Between Coherent and Noncoherent Demodulation for 
the Original JTIDS Waveform in AWGN 

For purpose of comparison, the performance for both coherent and noncoherent 

demodulation of the original JTIDS waveform is plotted in Figure 13. For 510bP −=  the 
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original JTIDS waveform with coherent demodulation requires 0/ 7bE N =  dB, while 

noncoherent demodulation requires 0/ 8bE N =  dB. Hence, at 510bP −=  the noncoherent 

system requires 1.0 dB more than the coherent system.  
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Figure 13.   Comparison of coherent and noncoherent demodulation of the original 
JTIDS waveform in AWGN. 

 

B. JTIDS WAVEFORM IN AWGN AND PNI 

1. Coherent Demodulation  

For the original JTIDS/Link-16 waveform in AWGN and PNI, the probability of 

channel chip error is [5] 
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                                        (5.5) 

where /b b oE Nγ =  and /I b IE Nγ = .  

Defining  ( )( )111/T b I
−−⎡ ⎤γ = γ + ργ

⎣ ⎦
in (5.5), we obtain 

                                                          10
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T
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rp Q γ⎛ ⎞
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.                                               (5.6) 

In AWGN, the probability of channel chip error is given by (5.1), which can be 

expressed as 
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                                                (5.7) 

Substituting (5.6) into (5.2), we obtain the probability of channel symbol error for 

both AWGN and PNI from 
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Substituting (5.7) into (5.2), we get 
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Now substituting (5.8) and (5.9) into (2.15), we get 
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Substituting (5.10) into (5.3) we approximate the probability of bit error by taking 

the average of the upper and lower bound on the probability of bit error given that a 

symbol error has occurred. 
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The performance of the original JTIDS waveform with different values of ρ  for 

both AWGN and PNI is shown in Figure 14. The plot is obtained for /b oE N =10 dB. 

From Figure 14, we see that PNI degrades the performance of the system relative to BNI 

by a maximum of 2.2 dB. We also see that 0.1ρ <  is not effective in degrading 

performance. The /b IE N  required for 510bP −=  when /b oE N =10 dB for 1ρ = , 0.2ρ =  

and 0.1ρ = , respectively, are listed in Table 6. 
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Figure 14.   Performance of the original JTIDS waveform with different values of ρ  in 
both AWGN and PNI for coherent demodulation when /b oE N =10 dB. 
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Table 6.   Performance of the original JTIDS waveform with different values of ρ  in both 
AWGN and PNI for coherent demodulation when 510bP −=  and /b oE N =10 dB. 

ρ  /b IE N  (dB) 

1 10.0 

0.2 12.2 

0.1 11.4 

 

2. Noncoherent Demodulation 

For noncoherent demodulation, the probability of channel chip error for the 

original JTIDS/Link-16 waveform in AWGN and PNI is [7] 
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for the single-pulse structure. 

As before defining ( )( )111/T b I
−−⎡ ⎤γ = γ + ργ

⎣ ⎦
in (5.11), we obtain 
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In AWGN, the probability of channel chip error is  
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for the single-pulse structure. Since /b b oE Nγ = , we obtain from (5.13) 
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Substituting (5.12) and (5.14) into (2.15), we get 
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Substituting (5.15) into (5.3), we approximate the probability of bit error by 

taking the average of the upper and lower bound on the probability of bit error given that 

a symbol error has occurred. 

 The performance of the original JTIDS waveform with different values of ρ  for 

both AWGN and PNI is shown in Figure 15. The plot is obtained for /b oE N =10 dB. 

From Figure 15, we see that PNI degrades the performance of the system relative to BNI 

by 3.3 dB. As with coherent demodulation, 0.1ρ <  is not effective in degrading 

performance. 

The /b IE N  required for 510bP −=  when /b oE N =10 dB for 1ρ = , 0.2ρ =  

and 0.1ρ = , respectively, are listed in Table 7. 
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Figure 15.   Performance of the original JTIDS waveform with different values of ρ  in 
both AWGN and PNI for noncoherent demodulation when /b oE N =10 dB. 

 

Table 7.   Performance of the original JTIDS waveform with different values of ρ  in both 
AWGN and PNI for noncoherent demodulation when 510bP −=  and  

/b oE N =10 dB. 

ρ  /b IE N  (dB) 

1 12.3 

0.2 15.4 

0.1 15.6 
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3. Comparison Between Coherent and Noncoherent Demodulation for 
the Original JTIDS Waveform in AWGN and PNI with Eb / No =10 dB 

For purposes of comparison, both coherent and noncoherent demodulation of the 

original JTIDS waveform with 1ρ = , 0.2ρ = , 0.1ρ =  and 0.05ρ =  for /b oE N =10 dB 

are plotted in Figures 16, 17, 18 and 19, respectively. The performance for coherent 

demodulation is superior to that of noncoherent demodulation, and the relative benefit of 

coherent demodulation increases as ρ  decreases for 0.1ρ ≥ . For 0.1ρ < , 510bP −<  for all 

/b IE N  when /b oE N =10 dB. For comparison purposes, the /b IE N  required for 

510bP −=  when /b oE N =10 dB for 1ρ = , 0.2ρ = , 0.1ρ = and 0.05ρ = , respectively, are 

listed in Tables 8, 9 and 10.  
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JTIDS:Coherent demodulation (ρ=1)
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Figure 16.   Comparison of the performance of the original JTIDS waveform in both 
AWGN and PNI with 1ρ =  for coherent and noncoherent demodulation 

when /b oE N =10 dB. 
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Table 8.   Comparison of the performance of the original JTIDS waveform in both AWGN 
and PNI with 1ρ =  for coherent and noncoherent demodulation when 510bP −=  

and /b oE N =10 dB. 

Demodulation /b IE N  (dB) 

Coherent 10.0 

Noncoherent 12.3 
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JTIDS:Coherent demodulation (ρ=0.2)
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Figure 17.   Comparison of the performance of the original JTIDS waveform in both 
AWGN and PNI with 0.2ρ =  for coherent and noncoherent demodulation 

when /b oE N =10 dB. 

 
 
 



 38 

Table 9.   Comparison of the performance of the original JTIDS waveform in both AWGN 
and PNI with 0.2ρ =  for coherent and noncoherent demodulation when 

510bP −=  and /b oE N =10 dB. 

Demodulation /b IE N  (dB) 

Coherent 12.2 

Noncoherent 15.4 
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JTIDS:Coherent demodulation (ρ=0.1)
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Figure 18.   Comparison of the performance of the original JTIDS waveform in both 
AWGN and PNI with 0.1ρ = for coherent and noncoherent demodulation 

when /b oE N =10 dB. 
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Table 10.   Comparison of the performance of the original JTIDS waveform in both AWGN 
and PNI with 0.1ρ =  for coherent and noncoherent demodulation when 

510bP −=  and /b oE N =10 dB. 

Demodulation /b IE N  (dB) 

Coherent 11.4 

Noncoherent 15.6 
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JTIDS:Coherent demodulation (ρ=0.05)
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Figure 19.   Comparison of the performance of the original JTIDS waveform in both 
AWGN and PNI with 0.05ρ = for coherent and noncoherent demodulation 

when /b oE N =10 dB. 
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4.  Comparison Between Coherent and Noncoherent Demodulation for 
the Original JTIDS Waveform in AWGN and PNI with Different 
Values of Eb / NI 

For purposes of comparison, both coherent and noncoherent demodulation of the 

original JTIDS waveform with 1ρ = , 0.2ρ =  and 0.1ρ =  in both AWGN and PNI are 

plotted in Figures 20, 21 and 22, respectively. In each figure, the performance for both 

coherent and noncoherent demodulation for /b oE N =10 dB as well as for /b oE N =8.7 dB, 

which leads to 810bP −=  for noncoherent demodulation when Eb/NI>>1, is plotted. The 

/b IE N  required for 510bP −=  when /b oE N =10 dB as well as when /b oE N =8.7 dB 

for 1ρ = , 0.2ρ = and 0.1ρ =  are listed in Tables 11, 12 and 13, respectively. 

As for the alternative JTIDS waveform, the comparison between coherent and 

noncoherent demodulation for the original waveform lead to similar conclusions. From 

Figures 20, 21 and 22, we see that for /b oE N =8.7 dB which leads asymptotically to 

810bP −=  for noncoherent demodulation, the /b IE N  required for 510bP −=  increases as 

ρ  decreases. Finally, for /b oE N =10 dB and 510bP −= , as ρ  decreases, the difference in 

performance between coherent and noncoherent demodulation increases from 2.3 dB for 

BNI to 4.2 dB  for 0.1ρ = . 
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Figure 20.   Comparison of the performance of the original JTIDS waveform with 1ρ =  
in both AWGN and PNI for coherent and noncoherent demodulation. 

 

Table 11.   Comparison of the performance of the original JTIDS waveform with 1ρ =  in 
both AWGN and PNI for coherent and noncoherent demodulation 

when 510bP −= . 

/b oE N (dB) Demodulation /b IE N  (dB) 

10 Coherent 10.0 

10 Noncoherent 12.3 

8.7 Coherent  12.0 

8.7 Noncoherent  16.6 
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Figure 21.   Comparison of the performance of the original JTIDS waveform 
with 0.2ρ =  in both AWGN and PNI for coherent and noncoherent demodulation. 

 

Table 12.   Comparison of the performance of the original JTIDS waveform with 0.2ρ =  in 
both AWGN and PNI for coherent and noncoherent demodulation 

when 510bP −= . 

/b oE N (dB) Demodulation /b IE N  (dB) 

10 Coherent 12.2 

10 Noncoherent 15.4 

8.7 Coherent  13.5 

8.7 Noncoherent  18.2 
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Figure 22.   Comparison of the performance of the original JTIDS waveform 
with 0.1ρ =  in both AWGN and PNI for coherent and noncoherent demodulation. 

 

Table 13.   Comparison of the performance of the original JTIDS waveform with 0.1ρ =  in 
both AWGN and PNI for coherent and noncoherent demodulation 

when 510bP −= . 

/b oE N (dB) Demodulation /b IE N  (dB) 

10 Coherent 11.4 

10 Noncoherent 15.6 

8.7 Coherent  13.0 

8.7 Noncoherent  18.6 
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C. COMPARISON OF 32-ARY ORTHOGONAL SIGNALING WITH (31,15) 
ENCODING WITH THE JTIDS WAVEFORM IN AN AWGN 
ENVIRONMENT 

In this section, we compare the performance of the alternative JTIDS/Link-16 

waveform and the original JTIDS/Link-16 waveform for both coherent and noncoherent 

demodulation in AWGN. 

1. Coherent Demodulation 

The probability of information bit error for the alternative JTIDS/Link-16 

waveform and the JTIDS/Link-16 waveform in AWGN are plotted in Figure 23. For 
510bP −= , 0/ 5.3 dBbE N =  and 0/ 7 dBbE N =  for the alternative JTIDS/Link-16 

waveform and the existing JTIDS/Link-16 waveform, respectively. This gives a 1.7 dB 

gain for the proposed JTIDS/Link-16 waveform as compared to the JTIDS/Link-16 

waveform.  
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Figure 23.   Comparison of 32-ary orthogonal signaling with (31, 15) RS encoding with 
the original JTIDS waveform in AWGN for coherent demodulation. 
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2. Noncoherent Demodulation 

The probability of information bit error for the alternative JTIDS/Link-16 

waveform and the JTIDS/Link-16 waveform in AWGN are plotted in Figure 24. For 
510bP −= , 0/ 6.6bE N =  dB and 0/ 8 dBbE N =  for the alternative JTIDS/Link-16 

waveform and the existing JTIDS/Link-16 waveform, respectively. This gives a 1.4 dB 

gain for the proposed JTIDS/Link-16 waveform as compared to the JTIDS/Link-16 

waveform.  
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Alternative JTIDS:Noncoherent demodulation

JTIDS:Noncoherent demodulation

 

Figure 24.   Comparison of 32-ary orthogonal signaling with (31, 15) RS encoding with 
the original JTIDS waveform in AWGN for noncoherent demodulation. 
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D. COMPARISON OF 32-ARY ORTHOGONAL SIGNALING WITH (31, 15) 
ENCODING WITH THE JTIDS WAVEFORM IN BOTH AWGN AND PNI  

In this section, we compare the performance of the alternative JTIDS/Link-16 

waveform and the original JTIDS/Link-16 waveform for both coherent and noncoherent 

demodulation when both AWGN and PNI are present. 

1. Coherent Demodulation 

We see in Figures 25, 26 and 27 and from Tables 14, 15 and 16 that for 510bP −=  

and for 0.1 1ρ≤ ≤  the original JTIDS waveform has a substantially inferior performance 

if the two waveforms are compared on an equal 0/bE N  basis, where the difference  is 

most pronounced for BNI but is 3.1 dB for 0.1ρ = . 
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Figure 25.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 1ρ =  for coherent demodulation 

when /b oE N =10 dB. 
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Table 14.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 1ρ =  for coherent 

demodulation when 510bP −=  and /b oE N =10 dB. 

JTIDS (waveform) /b IE N  (dB) 

Alternative 6.3 

Original 10.0 
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Figure 26.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 0.2ρ =  for coherent 

demodulation when /b oE N =10 dB. 
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Table 15.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 0.2ρ =  for coherent 

demodulation when 510bP −= and /b oE N =10 dB. 

JTIDS (waveform) /b IE N  (dB) 

Alternative 9.1 

Original 12.2 
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Figure 27.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 0.1ρ =  for coherent   

demodulation when /b oE N =10 dB. 
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Table 16.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 0.1ρ =  for coherent 

demodulation when 510bP −= and /b oE N =10 dB. 

JTIDS (waveform) /b IE N  (dB) 

Alternative 8.3 

Original 11.4 

 

2. Noncoherent Demodulation 

In this subsection, the alternative and the original waveform in both AWGN and 

PNI for different values of ρ  for noncoherent demodulation are compared.  

As with coherent demodulation, we see in Figures 28, 29 and 30 and from Tables 

17, 18 and 19 that, at 510bP −=  and for 0.1 1ρ≤ ≤ , the original JTIDS waveform is 

inferior if the two waveforms are compared on an equal 0/bE N  basis. In this case, the 

difference exceeds 4 dB, and the maximum difference of 4.7 dB occurs for 0.1ρ = . 
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Figure 28.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 1ρ =  for noncoherent 

demodulation when /b oE N =10 dB. 

 
Table 17.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 

JTIDS waveform in both AWGN and PNI with 1ρ =  for noncoherent 
demodulation when 510bP −= and /b oE N =10 dB. 

JTIDS (waveform) /b IE N  (dB) 

Alternative 8.1 

Original 12.4 
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Figure 29.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 

JTIDS waveform in both AWGN and PNI with 0.2ρ =  for noncoherent 
demodulation when /b oE N =10 dB. 

 

Table 18.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 0.2ρ =  for noncoherent 

demodulation when 510bP −= and /b oE N =10 dB. 

JTIDS (waveform) /b IE N  (dB) 

Alternative 11.2 

Original 15.4 
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Figure 30.   Comparison of 32-ary orthogonal signaling with (31, 15) encoding with the 
JTIDS waveform in both AWGN and PNI with 0.1ρ =  for the noncoherent 

demodulation when /b oE N =10 dB. 

 
Table 19.   Comparison of 32-ary orthogonal signaling with (31,15) encoding with the 

JTIDS waveform in both AWGN and PNI with 0.1ρ =  for  noncoherent 
demodulation when 510bP −= and /b oE N =10 dB. 

JTIDS (waveform) /b IE N  (dB) 

Alternative 10.9 

Original 15.6 
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E. CHAPTER SUMMARY 

In this chapter, the performance of the original JTIDS waveform was compared to 

that of the alternative JTIDS waveform for both coherent and noncoherent demodulation 

in AWGN only as well as both AWGN and PNI. The results show a significant 

improvement over the original JTIDS waveform for 1ρ ≤ . In the next chapter, the 

performance of the alternative JTIDS waveform with EED in AWGN only as well as 

both AWGN and PNI is investigated for both coherent and noncoherent demodulation. 
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VI. PERFORMANCE ANALYSIS OF 32-ARY ORTHOGONAL 
SIGNALING WITH (31,15) RS ENCODING IN AN AWGN AND 

PULSE-NOISE INTERFERENCE ENVIRONMENT WITH ERRORS-
AND-ERASURES DECODING 

In this chapter the performance of 32-ary orthogonal signaling with (31, 15) RS 

encoding in AWGN as well as both AWGN and PNI is examined for errors-and-erasures 

decoding. Both coherent and noncoherent demodulation are considered. 

A. COHERENT DEMODULATION IN AWGN 

We first examine the effect of errors-and-erasures decoding for coherent 

demodulation in AWGN, noise which is present for all communication systems even 

when there are no other types of noise present. 

The receiver has to decide which of the M symbols was received or decide that it 

cannot make a decision with sufficient confidence. If the output of each integrator 

,  1, 2,...,T iV X i M> = , then the receiver cannot decide with sufficient confidence, and the 

symbol is erased. 

Without loss of generality, we assume that the original signal representing symbol 

‘1’ is transmitted. With errors-and-erasures demodulation, if symbol ‘1’ is transmitted, 

then the probability of channel symbol erasure ep  and probability of correct symbol 

detection cp  are [6] 

  
                           1 2 3Pr( ... |1)e T T T T Mp V X V X V X V X= > > > >I I I I                     (6.1) 

and 

                           1 2 1 3 1 1Pr( ... |1, )c M Tp X X X X X X X V= > > > >I I I ,                    (6.2) 

respectively. The probability of channel symbol error can be obtained by substituting 

(6.1) and (6.2) into 

                                                          1s e cp p p= − − .                                                    (6.3) 
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From (6.1), the probability of symbol erasure is given by [6] 

                       ( )
1 2 ... 1 2 1 2 3... , ,..., |1 ...T T T T

M

V V V V

e X X X M Mp f x x x dx dx dx dx
−∞ −∞ −∞ −∞

= ∫ ∫ ∫ ∫                  (6.4) 

where ( )
1 2 ... 1 2, ,..., |1

MX X X Mf x x x  represents the joint probability density function of the 

random variables that model the branch outputs. Since the random variables that model 

the branch outputs are independent, (6.4) can be written as 

                                     
( ) ( )

( ) ( )
1 2

3

1 1 2 2

3 3

|1 |1

|1 ... |1 .

T T

T T

M

V V

e X X

V V

X X M M

p f x dx f x dx

f x dx f x dx

−∞ −∞

−∞ −∞

=

×

∫ ∫
∫ ∫

                             (6.5) 

Since             ( ) ( ) ( )
2 32 2 3 3|1 |1 ... |1T T T

M

V V V

X X X M Mf x dx f x dx f x dx
−∞ −∞ −∞

= = =∫ ∫ ∫ ,             (6.6) 

(6.5) simplifies to 

                                  ( ) ( )
1 2

1

1 1 2 2|1 |1T T
MV V

e X Xp f x dx f x dx
−

−∞ −∞

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ .                           (6.7) 

The conditional probability density functions for the random 

variables , where 1,2,...,mX m M=  that represent the integrator outputs when the noise is 

modeled as Gaussian noise are [6] 

                       ( )
( )2

2

21| exp for
22m

m c

X m

x A
f x m m M

⎡ ⎤− −⎢ ⎥= ≤⎢ ⎥σπσ
⎢ ⎥⎣ ⎦

,                      (6.8) 

and 

                                          ( )
2

2

1| , exp
22n

n
X n

xf x n n m
⎡ ⎤−

≠ = ⎢ ⎥σπσ ⎣ ⎦
                                (6.9) 

where 2
0 / sN Tσ = . Substituting (6.8) and (6.9) into (6.7), we obtain 

           
( )2 12

1 2
1 22 2

21 1exp exp
2 22 2

T T

M
V Vc

e

x A xp dx dx
−

−∞ −∞

⎡ ⎤⎡ ⎤− − ⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥σ σπσ πσ ⎣ ⎦⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
∫ ∫         (6.10) 
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which can be evaluated to obtain 

                                    
1

21 1
M

T c T
e

V A Vp Q Q
−⎡ ⎤⎛ ⎞− ⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟σ σ⎝ ⎠⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

.                              (6.11) 

Defining 2T cV A= α , where 0 1< α < , we get 

                              
1

2 2 21 1
M

c c c
e

A A Ap Q Q
−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞α − α
= − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

.                      (6.12) 

Hence, 

                                ( )
1

2 21 1 1
M

s s
e

o o

E Ep Q Q
N N

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − α − − α⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
.                       (6.13) 

From (6.13), the probability of channel erasure with (n, k) RS coding with code rate r  is 

                              ( )
1

2 21 1 1
M

s s
e

o o

rE rEp Q Q
N N

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − α − − α⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
.                      (6.14) 

Expressed in terms of /b oE N , (6.14) is given by 

                          ( )
1

2 21 1 1
M

b b
e

o o

rmE rmEp Q Q
N N

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − α − − α⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
.                    (6.15) 

Similarly, we can derive an expression for the probability of correct symbol 

detection [6]. From (6.2), we get 

                   ( )1 1 1

1 2 ... 1 2 2 3 1... , ,..., |1 ...
M

T

x x x

c X X X M MV
p f x x x dx dx dx dx

∞

−∞ −∞ −∞

⎡ ⎤= ⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ .              (6.16) 

Since the random variables , where 1,2,...,mX m M= , are independent, (6.16) can be 

written as 

      ( ) ( ) ( ) ( )1 1 1

1 2 31 2 2 3 3 1|1 |1 |1 ... |1
M

T

x x x

c X X X X M MV
p f x f x dx f x dx f x dx dx

∞

−∞ −∞ −∞

⎡ ⎤= ×⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫  (6.17) 

Using (6.6), we see that (6.17) simplifies to 

                                    ( ) ( )1

1 2

1

1 2 2 1|1 |1
T

Mx

c X XV
p f x f x dx dx

−∞

−∞

⎡ ⎤= × ⎢ ⎥⎣ ⎦∫ ∫ .                         (6.18) 
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Substituting (6.8) and (6.9) into (6.18), we get  

              
( ) 1

2 12
1 2

2 12 2

21 1exp exp
2 22 2T

M
xc

c V

x A xp dx dx
−

∞

−∞

⎡ ⎤− − ⎡ ⎤⎛ ⎞−⎢ ⎥= × ⎢ ⎥⎜ ⎟⎢ ⎥σ σπσ πσ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
∫ ∫       (6.19) 

which can be evaluated to obtain 

                         
( )2

1
1 1

12

21 exp 1
22T

M
c

c V

x A xp Q dx
−

∞
⎡ ⎤− − ⎡ ⎤⎛ ⎞⎢ ⎥= × − ⎜ ⎟⎢ ⎥⎢ ⎥σ σπσ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

∫                    (6.20) 

Letting ( )1 2 /cu x A= − σ  , we get 

                               ( )2
2

1

2
21 1

2

u

T c

M

c
V Ac

Ap e Q u du
−

−
∞

−
σ

⎡ ⎤⎛ ⎞
= × − +⎢ ⎥⎜ ⎟⎜ ⎟σπ ⎢ ⎥⎝ ⎠⎣ ⎦
∫                        (6.21) 

 Finally, with 2T cV A= α  and /o sN Tσ = , we obtain the probability of correct channel 

detection as 

                             
( )

( )2
2

1

21

1 21
2

u

s

o

M

s
Ec

N o

Ep e Q u du
N

−
−

∞

− −α

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎜ ⎟π ⎢ ⎥⎝ ⎠⎣ ⎦

∫                        (6.22) 

The probability of correct channel detection can be expressed in terms of /b oE N  

and code rate r as 

                        
( )

( )2
2

1

21

1 21
2

u

b

o

M

b
rmEc
N o

rmEp e Q u du
N

−
−

∞

− −α

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎜ ⎟π ⎢ ⎥⎝ ⎠⎣ ⎦

∫ .                    (6.23) 

With errors-and-erasures decoding, the probability of block error is given by [6] 

                                 
min 1 2

0 0
1

d it
i j n i j

E s e c
i j

P p p p
n n i
i j

− −
− −

= =

⎡ ⎤⎛ ⎞⎛ ⎞
= − ⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

−
∑ ∑                                (6.24) 

where (6.3), (6.15) and (6.23) are used in (6.24). 

The performance for 32-ary orthogonal signaling with a (31, 15) RS code and 

EED in AWGN for different values of α  is shown in Figures 31 and 32. From Figures 31 

and 32, we see that performance degrades for large α  ( 0.8)α ≥ , and there is not much 
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difference in performance for 0.5α < . At 510bP −= , there is a very small improvement in 

performance when 0.6α =  relative to 0.0α = . Since 0.0α =  implies no EED, we 

conclude that there is only a small improvement in performance using EED for the 

alternative JTIDS/Link-16 waveform in the presence of AWGN. If α  is too large, EED 

degrades performance. 
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Figure 31.   The performance of 32-ary orthogonal signaling with a (31, 15) RS code and 
EED in AWGN for different values of α  for coherent demodulation. 
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Figure 32.   The performance of 32-ary orthogonal signaling with a (31, 15) RS code and 
EED in AWGN for different values of α  for coherent demodulation. 

 

B. NONCOHERENT DEMODULATION IN AWGN 

With errors-and-erasures demodulation, if symbol ‘1’ is transmitted, then the 

probability of channel symbol erasure ep   and probability of correct symbol detection cp  

are [6] 

                           1 2 3Pr( ... |1)e T T T T Mp V X V X V X V X= > > > >I I I I                   (6.25) 

and 

                           1 2 1 3 1 1Pr( ... |1, )c M Tp X X X X X X X V= > > > >I I I ,                  (6.26) 

respectively. The probability of channel symbol error can be obtained by substituting 

(6.25) and (6.26) into 

                                                       1s e cp p p= − − .                                                     (6.27) 
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From (6.25), the probability of symbol erasure is given by [6] 

                         ( )
1 2 ... 1 2 1 2 30 0 0 0

... , ,..., |1 ...T T T T

M

V V V V

e V V V M Mp f v v v dv dv dv dv= ∫ ∫ ∫ ∫                (6.28) 

where ( )
1 2 ... 1 2, ,..., |1

MV V V Mf v v v  represents the joint probability density function of the 

random variables that model the detector outputs. Since the random variables that model 

the branch outputs are independent, (6.28) can be written as 

                                        
( ) ( )

( ) ( )
1 2

3

1 1 2 20 0

3 30 0

|1 |1

|1 ... |1 .

T T

T T

M

V V

e V V

V V

V V M M

p f v dv f v dv

f v dv f v dv

=

×

∫ ∫
∫ ∫

                         (6.29) 

Since            ( ) ( ) ( )
2 32 2 3 30 0 0

|1 |1 ... |1T T T

M

V V V

V V V M Mf v dv f v dv f v dv= = =∫ ∫ ∫ ,               (6.30) 

(6.29) simplifies to 

                                    ( ) ( )
1 2

1

1 1 2 20 0
|1 |1T T

MV V

e V Vp f v dv f v dv
−

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ .                         (6.31) 

The conditional probability density functions for the random variables 

, where 1,2,...,mV m M= , that represent the branch outputs when the signal representing 

symbol m  is transmitted is the non-central chi-squared probability density function with 

two degrees of freedom when the noise is modeled as Gaussian noise [6]. Hence, 

                   ( ) ( )2

02 2 2

2 21| exp for
2 2m

m c c m
V m

v A A v
f v m I m M

⎡ ⎤ ⎛ ⎞− +
= ≤⎢ ⎥ ⎜ ⎟⎜ ⎟σ σ σ⎢ ⎥ ⎝ ⎠⎣ ⎦

,            (6.32) 

and 

                                         ( ) 2 2

1| , exp
2 2n

n
V n

vf v n n m −⎡ ⎤≠ = ⎢ ⎥σ σ⎣ ⎦
.                                    (6.33) 

Substituting (6.32) and (6.33) into (6.31), we get 

            
( ) 12

1 1 2
0 1 22 2 2 2 20 0

2 21 1exp exp
2 2 2 2

T T

M
V Vc c

e

v A A v vp I dv dv
−⎡ ⎤⎡ ⎤ ⎛ ⎞− + ⎡ − ⎤⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎜ ⎟σ σ σ σ σ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦⎣ ⎦

∫ ∫   (6.34) 
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Equation (6.34) can be rewritten as 

       

( ) ( )2 2
1 11 1

0 1 0 12 2 2 2 2 20

1
2

22 20

2 22 21 1exp exp
2 2 2 2

1 exp .
2 2

T

T

c cc c
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M
V

v A v AA v A v
p I dv I dv

v dv

∞ ∞

−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− + − +
⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ σ σ σ σ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ − ⎤⎡ ⎤×⎢ ⎥⎢ ⎥σ σ⎣ ⎦⎣ ⎦

∫ ∫

∫

 (6.35) 

Since  

                                    
( )2

1 1
0 12 2 20

2 21 exp 1
2 2

c c
v A A v

I dv
∞ ⎡ ⎤ ⎛ ⎞− +

=⎢ ⎥ ⎜ ⎟⎜ ⎟σ σ σ⎢ ⎥ ⎝ ⎠⎣ ⎦
∫                          (6.36) 

then (6.35) is given by 

                                  

( )2
1 1

0 12 2 2

1
2

22 20

2 211 exp
2 2

1 exp .
2 2

T

T

c c
e V

M
V

v A A v
p I dv

v dv

∞

−

⎡ ⎤⎡ ⎤ ⎛ ⎞− +
⎢ ⎥= − ⎢ ⎥ ⎜ ⎟⎜ ⎟σ σ σ⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦⎣ ⎦

⎡ − ⎤⎡ ⎤×⎢ ⎥⎢ ⎥σ σ⎣ ⎦⎣ ⎦

∫

∫

                        (6.37) 

Letting 1v x= σ  and 2v x= σ  and defining  22T cV A= α  , where 0 1a< < , in (6.37), we 

derive 

                               

0

22

00
0 0

1

2

exp 2
2

1 exp .
2

sE
s sN

e

M
T

x E Ep x I x dx
N N

V

α

−

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

⎡ − ⎤⎡ ⎤× −⎢ ⎥⎢ ⎥σ⎣ ⎦⎣ ⎦

∫
                       (6.38) 

Since  

                            ( )
1 1

2
0 0

1 exp 1 exp
2

1M M
nT s

n

V n E
N

M
n

− −

=

⎛ ⎞ ⎡ ⎤⎡ − ⎤ − α⎡ ⎤− = − ⎜ ⎟ ⎢ ⎥⎢ ⎥⎢ ⎥σ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

−∑                     (6.39) 

(6.38) can be written as 
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sE
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e

M
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n
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n E
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M
n

α

−

=

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎡ ⎤− α
× − ⎜ ⎟ ⎢ ⎥

⎣ ⎦⎝ ⎠

−

∫

∑
                        (6.40) 
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From (6.40), the probability of channel erasure with (n, k) RS coding with code 

rate r  is 

                              

( )

0
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0 0

exp 2
2

1 exp .
1

srE
s sN

e

M
n s

n
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M
n
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−

=

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎡ ⎤− α
× − ⎜ ⎟ ⎢ ⎥

⎣ ⎦⎝ ⎠

−

∫

∑
                      (6.41) 

In terms of /b oE N , (6.41) can be expressed as 

                         

( )
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exp 2
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1

brmE
b bN

e

M
n b

n
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N N
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N

M
n

α

−

=

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎡ ⎤− α
× − ⎜ ⎟ ⎢ ⎥

⎣ ⎦⎝ ⎠

−

∫

∑
                   (6.42) 

Next, we derive an expression for the probability of correct symbol detection. 

From (6.26), we have 

                      ( )1 1 1

1 2 ... 1 2 2 3 10 0 0
... , ,..., |1 ...

M
T

v v v

c V V V M MV
p f v v v dv dv dv dv

∞ ⎡ ⎤= ⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ .                (6.43) 

Since the random variables , where 1,2,...,mV m M= , are independent. (6.43) can be 

written as 

          ( ) ( ) ( ) ( )1 1 1

1 2 31 2 2 3 3 10 0 0
|1 |1 |1 ... |1

M
T

v v v

c V V V V M MV
p f v f v dv f v dv f v dv dv

∞ ⎡ ⎤= ×⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫    (6.44) 

Using (6.30) in (6.44), we get 

                                    ( ) ( )1

1 2

1

1 2 2 10
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T
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c V VV
p f v f v dv dv

−∞ ⎡ ⎤= ⎢ ⎥⎣ ⎦∫ ∫ .                               (6.45) 

Finally, substituting (6.32) and (6.33) into (6.45), we get 
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2 21 1exp exp
2 2 2 2
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M
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c
V

v A A v vp I dv dv
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∫ ∫    (6.46) 

which can be partially evaluated to obtain 
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M
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∫ .          (6.47) 
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Substituting (6.39) into (6.47), we get 
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M
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∫

(6.48) 

Using (6.36) in (6.48) and interchanging the order of integration and summation, 

we get 
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∫
       (6.49) 

From (6.49), the probability of correct channel detection with FEC coding 

expressed in terms of /b oE N  and code rate r is 
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∫
   (6.50) 

As with coherent detection, the probability of block error is obtained by 

substituting (6.27), (6.42) and (6.50) into (6.24). 

The performance for 32-ary orthogonal signaling with a (31, 15) RS code and 

EED in AWGN for different values of α  is shown in Figures 33 and 34. From Figures 33 

and 34, we see that performance degrades for large α  ( 0.6)α > . There is not much 

difference in performance for α  less than 0.4, and, at 510bP −= , there is a slight 

improvement relative to 0.0α =  when 0.5α = . 
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Figure 33.   The performance of 32-ary orthogonal signaling with a (31, 15) RS code and 
EED in AWGN for different values of α  for noncoherent demodulation. 
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Figure 34.   The performance of 32-ary orthogonal signaling with a (31, 15) RS code and 
EED in AWGN for different values of α  for noncoherent demodulation. 

 

C. COHERENT DEMODULATION IN AWGN AND PNI 

The probability of channel erasure with FEC and EED in the presence of PNI is 

obtained from (2.13), (2.15) and (6.15) as 
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        (6.51) 
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Expressing (6.51) in terms of ( )( )111/T b I
−−⎡ ⎤γ = γ + ργ

⎣ ⎦
and bγ , we get 
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            (6.52) 

Similarly, the probability of correct channel detection when PNI is present is 

given by  
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∫

∫
           (6.53) 

The probability of channel symbol error with EED and the probability of block 

error are now obtained as before when only AWGN was present.  

The performance of 32-ary orthogonal signaling with (31, 15) RS coding for 

different α  where 0.1ρ =  ( 0/ 10 dBbE N = ) in the presence of AWGN and PNI is 

shown in Figure 35. We observe that 0.0 0.5≤ α ≤  provides almost the same 

performance at 510bP −= , while 0.6α =  gives poorer performance. For 0.7α ≥ , the 

performance worsens significantly. Since 0.0α =  implies no EED, we conclude that 

there is very little improvement in the performance of the alternative JTIDS waveform 

when EED is used in the presence of AWGN and PNI. 
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Figure 35.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI for different values of α  with 0.1ρ =  for coherent demodulation 
when 0/ 10 dBbE N = . 

 

The performance of 32-ary orthogonal signaling with (31, 15) RS coding for 

different α  where 0.2ρ =  ( 0/ 10 dBbE N = ) in the presence of AWGN and PNI is 

shown in Figure 36. We observe that now 0.0 0.7≤ α ≤  provides almost the same 

performance at 510bP −= , while for 0.7α ≥ , performance worsens significantly. 
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Figure 36.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI for different values of α  with 0.2ρ =  for coherent demodulation 
when 0/ 10 dBbE N = . 

 

The performance of 32-ary orthogonal signaling with (31, 15) RS coding for 

different α  where 1ρ =  ( 0/ 10 dBbE N = ) in the presence of AWGN and PNI is shown 

in Figure 37. As previously, when 1ρ < , we observe that 0.0 0.7≤ α <  provides almost 

the same performance at 510bP −= , while for 0.7α ≥ , performance worsens significantly. 
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Figure 37.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI for different values of α  with 1ρ = for coherent demodulation 

when 0/ 10 dBbE N = . 

 

Next, we investigate the performance of the alternative waveform with EED for 

different ρ  when 0.5α =  since this results in slightly better performance at 510bP −= . 

The performance of 32-ary orthogonal signaling with (31, 15) RS coding with EED in a 

PNI environment for various values of ρ  with 0.5α =  and 0/ 10 dBbE N =  is shown in 

Figure 38. We observe that at 510bP −= , as ρ  decreases, performance is degraded, but 

the degradation is limited to about 3.0 dB. 
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Figure 38.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI with 0.5α =  and 0/ 10 dBbE N =  for different values of ρ  for coherent 

demodulation. 

Comparing the results from Figures 8 and 9 ( 0/ 10dBbE N =  and 0.0α = ) with 

those from Figure 38 ( 0/ 10dBbE N =  and 0.5α = ), we see that for 510bP −=  and 

0.2 1ρ≤ ≤ , performance is about the same or even slightly worse when EED is used. 

Next, we investigate the performance of 32-ary orthogonal signaling with (31, 15) 

RS coding for different α  where 0.1ρ =  and 0/ 6.8 dBbE N =  in the presence of AWGN 

and PNI is shown in Figure 39. We observe that 0.0 0.4≤ α ≤  provides almost the same 

performance at 510bP −= , while 0.5α =  gives slightly poorer performance. For 0.6α ≥ , 

the performance worsens significantly. Since 0.0α =  implies no EED, we conclude that 

there is very little improvement in the performance of the alternative JTIDS waveform 

when EED is used in the presence of AWGN and PNI regardless of whether 0/bE N  is 

large or not. 
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Figure 39.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI for different values of α  with 0.1ρ =  for coherent demodulation 
when 0/ 6.8 dBbE N = . 

 

As previously, the performance of 32-ary orthogonal signaling with (31, 15) RS 

coding for different α  where 0.2ρ =  ( 0/ 6.8 dBbE N = ) in the presence of AWGN and 

PNI is shown in Figure 40. We observe that 0.0 0.4≤ α ≤  provides almost the same 

performance at 510bP −= . For 0.6α > , performance worsens significantly. 
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Figure 40.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI for different values of α  with 0.2ρ =  for coherent demodulation 
when 0/ 6.8 dBbE N = . 

 

Additionally, the performance of 32-ary orthogonal signaling with (31, 15) RS 

coding for different α  where 1ρ =  ( 0/ 6.8 dBbE N = ) in the presence of AWGN and 

PNI is shown in Figure 41. As previously, when 1ρ < , we observe that 0.0 0.5≤ α <  

provides almost the same performance at 510bP −= , while for 0.7α ≥ , performance 

worsens significantly. 
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Figure 41.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI for different values of α  with 1ρ = for coherent demodulation 
when 0/ 6.8 dBbE N = . 

Finally, we investigate the performance of the alternative waveform with EED for 

different ρ  when 0.3α =  since this results in slightly better performance at 510bP −= . 

The performance of 32-ary orthogonal signaling with (31, 15) RS coding with EED in a 

PNI environment for various values of ρ  with 0.3α =  and 0/ 6.8 dBbE N =  is shown in 

Figure 42. We observe that at 510bP −= , as ρ  decreases, performance is degraded, but 

the degradation is limited to about 1.7 dB. 
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Figure 42.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI with 0.3α =  and 0/ 6.8 dBbE N =  for different values of ρ  for coherent 
demodulation. 

Again, comparing the results from Figures 8 and 9 ( 0/ 6.8dBbE N =  and 0.0α = ) 

with those from Figure 42 ( 0/ 6.8dBbE N =  and 0.3α = ), we see that for 510bP −=  and 

0.2 1ρ≤ ≤ , performance is about the same or even slightly worse, just as when 0/bE N  is 

larger. As a result, we conclude that EED provides no additional benefit when coherent 

detection is used. 

D. NONCOHERENT DEMODULATION IN AWGN AND PNI 

The probability of channel erasure with FEC and EED in the presence of PNI is 

obtained from (2.13), (2.15) and (6.42) as  
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Expressing (6.54) in terms of ( )( )111/T b I
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and bγ , we get 
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In a similar manner, the probability of correct channel detection with FEC and 

EED in the presence of PNI is obtained by adapting (6.50) to get 
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 (6.56) 

The probability of channel symbol error with EED and the probability of block 

error are now obtained as before when only AWGN was present. 

The performance of 32-ary orthogonal signaling with (31, 15) RS coding for 

different α  where 0.1ρ =  ( 0/ 10 dBbE N = ) in the presence of AWGN and PNI is 

shown in Figure 43. We observe that, for 510bP −= , 0.0 0.3≤ α ≤  provides almost the 

same performance. For 0.4α > , the performance worsens significantly. Since 0.0α =  

implies no EED, we conclude that there is very little improvement in the performance of 

the alternative JTIDS waveform from using EED in the presence of AWGN and PNI. 
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Figure 43.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI for different values of α  with 0.1ρ = and for noncoherent demodulation 

when 0/ 10 dBbE N = . 

 

The performance of 32-ary orthogonal signaling with (31, 15) RS coding for 

different α  where 0.2ρ =  ( 0/ 10 dBbE N = ) in the presence of AWGN and PNI is 

shown in Figure 44. We observe that for 510bP −= , 0.0 0.4≤ α ≤  provides almost the 

same performance. For 0.6α ≥ , performance worsens significantly. 
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Figure 44.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI for different values of α  with 0.2ρ = and for noncoherent demodulation 

when 0/ 10 dBbE N = . 

 

The performance of 32-ary orthogonal signaling with (31, 15) RS coding for 

different values of α  where 1ρ =  ( 0/ 10 dBbE N = ) in the presence of AWGN and PNI 

is shown in Figure 45. We observe that 0.0 0.6≤ α ≤  provides almost the same 

performance at 510bP −= , but 0.5α =  gives slightly better performance than 0.0α = . For 

0.6α > , performance worsens significantly. 

 

 

 

 



 79 

2 4 6 8 10 12 14 16 18 20
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/NI (dB)

P
b

 

 

α=0

α=0.1

α=0.2

α=0.3

α=0.4

α=0.5

α=0.6

α=0.7

α=0.8

α=0.9

α=1

 

Figure 45.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI for different values of α  with 1ρ = and for noncoherent demodulation 

when 0/ 10 dBbE N = . 

 

Next, we investigate the performance of the alternative waveform with EED for 

different ρ  when 0.3α =  since performance is slightly better for 510bP −= . The 

performance of 32-ary orthogonal signaling with (31, 15) RS coding with EED in a PNI 

environment for various values of ρ  with 0.3α =  and 0/ 10 dBbE N =  is shown in 

Figure 46. We observe that, for 510bP −= , as ρ  decreases, performance is degraded, but 

the degradation is limited to about 3.0 dB. 
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Figure 46.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI with 0.3α =  and 0/ 10 dBbE N =  for and different values of ρ  for 

noncoherent demodulation. 

Comparing the results of Figures 8 and 9 ( 0/ 10dBbE N =  and 0.0α = ) with those 

of Figure 46 ( 0/ 10dBbE N =  and 0.3α = ), we see that for 510bP −=  and 0.1 1ρ≤ ≤ , 

performance is not improved by EED. 

Next, the performance of 32-ary orthogonal signaling with (31, 15) RS coding for 

different α  where 0.1ρ =  and 0/ 6.8 dBbE N =  in the presence of AWGN and PNI is 

shown in Figure 47. We observe that 0.0 0.4≤ α ≤  provides almost the same 

performance at 510bP −= , while 0.5α =  and 0.6α =  give poorer performance. For 

0.6α > , the performance worsens significantly. Since 0.0α =  implies no EED, we 

conclude that there is very little improvement in the performance of the alternative JTIDS 

waveform when EED is used in the presence of AWGN and PNI. 
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Figure 47.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI for different values of α  with 0.1ρ = and for noncoherent demodulation 

when 0/ 6.8 dBbE N = . 

 

As previously, the performance of 32-ary orthogonal signaling with (31, 15) RS 

coding for different α  where 0.2ρ =  ( 0/ 6.8 dBbE N = ) in the presence of AWGN and 

PNI is shown in Figure 48. We observe that, for 510bP −= , 0.0 0.5≤ α ≤  provides almost 

the same performance. For 0.6α ≥ , performance worsens significantly. 
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Figure 48.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI for different values of α  with 0.2ρ = and for noncoherent demodulation 
when 0/ 6.8 dBbE N = . 

Finally, the performance of 32-ary orthogonal signaling with (31, 15) RS coding 

for different values of α  where 1ρ =  ( 0/ 6.8 dBbE N = ) in the presence of AWGN and 

PNI is shown in Figure 49. We observe that 0.2α =  and 0.4α =  provide almost the 

same performance at 510bP −= , while 0.5α =  and 0.6α =  give slightly better 

performance than 0.0α = . For 0.7α ≥ , performance worsens significantly. 
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Figure 49.   The performance of 32-ary orthogonal signaling with EED in AWGN and 

PNI for different values of α  with 1ρ = and for noncoherent demodulation 
when 0/ 6.8 dBbE N = . 

Now, we consider the performance of the alternative waveform with EED for 

different ρ  when 0.3α =  since performance is slightly better for 510bP −= . The 

performance of 32-ary orthogonal signaling with (31, 15) RS coding with EED in a PNI 

environment for various values of ρ  with 0.3α =  and 0/ 6.8 dBbE N =  is shown in 

Figure 50. We observe that, for 510bP −= , as ρ  decreases, performance is degraded, but 

the degradation is limited to about 1.4 dB. 
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Figure 50.   The performance of 32-ary orthogonal signaling with EED in AWGN and 
PNI with 0.3α =  and 0/ 6.8 dBbE N =  for and different values of ρ  for 

noncoherent demodulation. 

gain, comparing the results from Figures 8 and 9 ( 0/ 6.8dBbE N =  and 0.0α = ) 

with those from Figure 50 ( 0/ 6.8dBbE N =  and 0.3α = ), we see that for 510bP −=  and 

0.1 1ρ≤ ≤ , performance is not improved by using EED. 

E. CHAPTER SUMMARY 

In this chapter, the performance of the alternative JTIDS waveform with EED in 

AWGN only as well as AWGN and PNI for both coherent and noncoherent demodulation 

was examined. In the next chapter, the findings of this thesis are summarized. 
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VII. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This thesis presented an alternative JTIDS/Link-16 waveform, 32-ary orthogonal 

signaling with (31, 15) RS coding, to the JTIDS/Link-16 waveform. Both coherent and 

noncoherent demodulation of the proposed waveform were analyzed, and subsequently 

the performance obtained was compared with that for the existing JTIDS/Link-16 

waveform for AWGN as well as PNI. When only AWGN is present, the alternative 

waveform outperforms the JTIDS/Link-16 waveform by 1.7 dB and 1.4 dB for coherent 

and noncoherent detection, respectively, when 510bP −= . When PNI is also present, the 

maximum degradation of the alternative waveform is 2.8 dB and 3.1 dB at 0.2ρ =  for 

coherent and noncoherent detection, respectively, when 510bP −= and 0/ 10 dBbE N = . 

For the same conditions, the JTIDS/Link-16 waveform suffers a further degradation of 

3.1 dB and 4.2 dB for coherent and noncoherent detection, respectively. When 0/bE N  is 

reduced, the absolute improvement in performance obtained with the alternative 

waveform is smaller. 

We found very little benefit to EED for the alternative waveform since there is 

only a small improvement in performance as compared to errors-only decoding 

regardless of whether detection is coherent or noncoherent. This result is rather surprising 

since EED usually improves the performance of a waveform when PNI is present. 

B. FUTURE RESEARCH AREAS 

We examined an alternative JTIDS/Link-16 waveform that consists of 32-ary 

orthogonal signaling with (31,15) RS coding and provides an improvement in 

performance over the existing JTIDS/Link-16 waveform. 

The performance of either the original or the alternative waveform might be 

further improved by using either a concatenated code or a non-binary convolutional code. 

The alternative waveform should also be evaluated assuming differential encoding. In 

this thesis, the alternative waveform is compared only to the JTIDS/Link-16 single-pulse 
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waveform. The alternative waveform should be evaluated as a double-pulse waveform 

and compared to the JTIDS/Link-16 double-pulse waveform. Finally, the alternative 

waveform should be analyzed when channel fading is a factor. 
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